Dynamic matchings and quasidynamic fractional matchings. I

نویسنده

  • James B. Orlin
چکیده

This paper presents and solves in polynomial time the dynamic matching problem, an integer programming problem which involves matchings in a time-expanded infinite network. The initial model is a finite directed graph G = (V, E) in which each edge has an associated real-valued weight and an integral distance. We wish to "match" vertices over an infinite horizon, and we permit vertex i in period p to be matched to vertex i in period r if and only if there is an edge e = (i, i) of E with distance r-p or else an edge e = (j, i) of E with distance p-r. Equivalently, we construct a "dynamic graph" in which there is an edge incident to vertex i-p and to vertex j-r in the above cases. The weight of this matched edge in the dynamic (time-expanded) graph is the weight of e. The dynamic matching problem is to determine a matching M in the dynamic graph such that M has a maximum long-run average weight per period. We show that the infinite horizon dynamic matching problem is linearly transformable to the finite horizon Q-matching problem, which is shown to be solvable in polynomial time in Part II of this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic matchings and quasidynamic fractional matchings. II

Consider a directed graph G in which every edge has an associated real-valued distance and a real-valued weight. The weight of an undirected circuit of G is the sum of the weights of the edges, whereas the distance of an undirected circuit is the sum of the distances of the forward edges of the circuit minus the sum of the distances of the backward edges. A trivial circuit is a two-edge circuit...

متن کامل

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Matchings in Graphs

LP relaxation One way to deal with this is to relax the integrality constraints and allow xe ∈ [0, 1] to get a linear program, which can be solved in polynomial-time. However, this gives rise to fractional matchings. Characteristic vectors of matchings in G can be seen as points in R where m = |E|. The convex hull of all the matchings forms a polytope called the matching polytope M. However, th...

متن کامل

The number of maximal matchings in polyphenylene chains

A matching is maximal if no other matching contains it as a proper subset. Maximal matchings model phenomena across many disciplines, including applications within chemistry. In this paper, we study maximal matchings in an important class of chemical compounds: polyphenylenes. In particular, we determine the extremal polyphenylene chains in regards to the number of maximal matchings. We also de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Networks

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1983